

OLIMPÍADA AMAPAENSE DE QUÍMICA 2015

LEIA ATENTAMENTE AS INSTRUÇÕES SEGUINTES:

- 1. Verifique, no CARTÃO-RESPOSTA se seu nome está registrado corretamente. Caso haja alguma divergência, comuniquea imediatamente ao aplicador da sala.
- 2. Este CADERNO DE QUESTÕES contém 30 questões.
- 3. Confira se o seu CADERNO DE QUESTÕES contém a quantidade de questões e se essas estão na ordem. Caso o caderno esteja incompleto, tenha qualquer defeito ou apresente divergência, comunique ao aplicador da sala para que ele tome as providências cabíveis.
- 4. Para cada uma das questões objetivas, são apresentadas 5 opções. Apenas uma responde corretamente à questão.
- 5. O tempo disponível para esta prova é de 4 horas.
- 6. Reserve os 30 minutos finais para marcar seu CARTÃO-RESPOSTA. Os rascunhos e as marcações assinaladas no CARDERNO DE QUESTÕES não serão considerados na avaliação.
- 7. Quando terminar a prova, acene para chamar o aplicador e entre este

CARDERNO DE QUESTÕES E O CARTÃO-RESPOSTA.

- 8. Você poderá deixar o local de prova somente após decorridas duas horas do início da aplicação e poderá levar seu CADERNO DE QUESTÕES ao deixar em definitivo a sala de prova nos 30 minutos finais.
- 9. Você será eliminado do Exame, a qualquer tempo, no caso de:
- a) prestar, em qualquer documento, declaração falsa ou inexata.
- b) perturbar, de qualquer modo, a ordem no local de aplicação das provas, incorrendo em comportamento indevido durante a realização do Exame;
- c) portar qualquer tipo de equipamento eletrônico e de comunicação após ingressar na sala de provas;
- d) se comunicar, durante as provas, com outro participante verbalmente, por escrito ou por qualquer outra forma;
- e) utilizar ou tentar utilizar meio fraudulento, em benefício próprio ou de terceiros.
- f) utilizar livros, notas ou impressos durante a realização do Exame.

Responda à questão, numerando corretamente a coluna da direita, que contém exemplos de sistemas, de acordo com a da esquerda, que apresenta a classificação dos mesmos.

- 1. Elemento químico
- 2. Substância simples
- 3. Substância composta
- 4. Mistura homogênea
- 5. Mistura heterogênea
- () fluoreto de sódio
- () gás oxigênio
- () água do mar filtrada
- () limonada com gelo

A alternativa que contém a sequência correta dos números da coluna da direita, de cima para baixo, é:

- (A) 3-2-4-5
- (B) 3 2 5 4
- (C) 2-1-4-5
- (D) 2 3 5 4
- (E) 1 2 3 4

QUESTÃO 02

Responda à questão com base na tabela a seguir, que apresenta exemplos de substâncias químicas e seus respectivos pontos de fusão (P.F.) e pontos de ebulição (P.E.), em °C a 1 ATM.

SUBSTÂNCIA	P.F.	P.E.
Clorofórmio	- 63	61
Fenol	43	182
Éter Etílico	- 116	34
Pentano	-130	36

Em um dia muito quente, cuja temperatura é 39 °C e a pressão de 1 ATM, as substâncias que se apresentam no estado físico gasoso são:

- (A) clorofórmio e fenol;
- (B) éter etílico e pentano;
- (C) fenol e éter etílico;
- (D) fenol e pentano;
- (E) clorofórmio e éter etílico;

QUESTÃO 03

Muitos produtos químicos estão presentes no nosso cotidiano, como por exemplo, o leite de magnésio, vinagre, calcário, a soda cáustica, entre outros. Estas substâncias citadas pertencem, respectivamente, às funções químicas:

- (A) ácido, base, sal e base;
- (B) base, sal, ácido e base;
- (C) base, ácido, sal e base;
- (D) ácido, base, base e sal;
- (E) sal, ácido, sal e base;

QUESTÃO 04

Nos garimpos, utiliza-se o mercúrio para separar o ouro das impurezas. Quando o mercúrio entra em contato com a causa uma água dos rios. séria contaminação: absorvido é por microorganismos, que são ingeridos pelos peixes pequenos, os quais são devorados pelos peixes grandes usados alimentação humana. Uma das formas de medir o grau de intoxicação por mercúrio nos seres humanos é a determinação da sua presença nos cabelos. A OMS (Organização Mundial da Saúde) estabeleceu que 0 nível máximo permissível, sem risco para a saúde, é de 50.10⁻⁶ g de mercúrio, por grama de cabelo.

Nesse sentido, pode-se afirmar que essa quantidade de mercúrio corresponde a: (Massa atômica: Hg = 200) (N $^{\circ}$. de Avogadro = 6,0 x IO $^{\cdot 23}$)

- (A) 1,5.10¹⁷ átomos de Hg
- (B) 1,5.10²³ átomos de Hg
- (C) 2,5.10⁶ átomos de Hg
- (D) 150 bilhões de átomos de Hg
- (E) 200 milhões de átomos de Hg

QUESTAO 05

"Ácido sulfúrico vaza de carreta na Anchieta. Cerca de 30 litros de ácido sulfúrico vazaram, ontem à tarde, de um caminhão que trafegava pela Via Anchieta, próxima a Cubatão (...)"

O Estado de São Paulo, 25/09/97.

O ácido sulfúrico é um ácido tóxico e corrosivo, causando danos ao meio ambiente, principalmente quando derramado sobre o solo onde existem mananciais de água. O melhor modo de atenuar seu efeito e tentar, o mais possível, eliminá-lo é o de espalhar no local:

- (A) Óleo diesel
- (B) H₂O

- (C) Ca(OH)2
- (D) HNO₃
- (E) NaCl

Em vazamentos ocorridos em refinarias de petróleo, que extravasam para rios, lagos e oceanos, verifica-se a utilização de barreiras de contenção para evitar a dispersão do óleo. Nesses casos, observa-se a formação de um sistema heterogêneo onde o petróleo fica na superfície desses recursos hídricos. Sobre o sistema acima descrito é correto afirmar que a água e o petróleo não se misturam por que:

- (A) se apresentam em estados físicos diferentes:
- (B) apresentam densidades diferentes, e o petróleo fica na superfície devido a sua maior densidade;
- (C) apresentam moléculas com polaridades diferentes, e o petróleo fica na superfície devido a sua menor densidade;
- (D) a viscosidade da água é maior que a do petróleo;
- (E) a elevada volatilidade do petróleo faz com que este fique na superfície;

QUESTÃO 07

Sendo o subnível 4s¹ (com um elétron) o mais energético de um átomo, podemos afirmar que:

- **I.** O número total de elétrons deste átomo é igual a 19;
- **II.** Este átomo apresenta 4 camadas eletrônicas;
- **III.** Sua configuração eletrônica é: 1s²; 2s²; 2p⁶; 3s²; 3p⁶; 3d⁹; 4s¹
- (A) apenas a afirmação I é correta
- (B) apenas a afirmação II é correta
- (C) apenas a afirmação III é correta
- (D) as afirmações I e II são corretas
- (E) as afirmações I e III são corretas

QUESTÃO 08

O íon Fe²⁺, que faz parte da molécula de hemoglobina e integra o sistema de transporte de oxigênio no interior do corpo, possui 24 elétrons e número de massa igual a 56. O número atômico e o número de nêutrons desse íon correspondem, respectivamente, a:

- (A) Z = 26 e n = 30.
- (B) Z = 24 e n = 30.
- (C) Z = 24 e n = 32.
- (D) Z = 30 e n = 24.
- (E) Z = 26 e n = 32.

QUESTÃO 09

Os fogos de artifício utilizam sais de diferentes metais adicionados à pólvora e, quando explodem, produzem cores variadas. As diversas cores são produzidas quando os elétrons dos íons metálicos retornam para níveis de menor energia, emitindo radiações coloridas.

SAIS DE	COLORAÇÃO	
Bário	Verde	
Césio	Azul Claro	
Potássio	Violeta	
Sódio	Amarelo	
Cálcio	Vermelho	

Esse fenômeno pode ser explicado pela Teoria Atômica proposta por:

- (A) Thomson
- (B) Dalton
- (C) Bohr
- (D) Lavoisier
- (E) Rutherford

QUESTÃO 10

Nas alternativas a seguir aparecem alguns sistemas e os métodos de separação de seus componentes. Identifique a associação correta.

- (A) solução aquosa de glicose filtração;
- (B) álcool hidratado decantação;
- (C) água e óleo cristalização fracionada;
- (D) limalha de ferro e areia catação;
- (E) álcool e tinta corante destilação.

QUESTÃO 11

solução se apresentará e corpo de fundo. Para completar corretamente o texto, as lacunas devem ser preenchidas, na ordem em que aparecem, por:

Temperatura (°C)	Solubilidade (g de KCI / 100 g de água)
20	30
40	35
60	40
80	45

- (A) saturada sem insaturada com
- (B) insaturada sem saturada sem
- (C) insaturada sem saturada com
- (D) insaturada sem insaturada sem
- (E) saturada com saturada com

QUESTÃO 12

Na titulação de 40 ml de uma solução de soda cáustica (NaOH), de concentração 3 mol/L, foi utilizada uma solução de ácido sulfúrico de concentração 1,5 mol/L, de acordo com a equação química abaixo:

 $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

Com base nessas informações, é correto afirmar que o volume, em litros, do ácido utilizado na titulação da soda cáustica. é:

- (A) 0,04 litros
- (B) 0,06 litros
- (C) 0,12 litros
- (D) 0,40 litros
- (E) 0,04 litros

QUESTÃO 13

Diluição é uma operação muito empregada no nosso dia-a-dia, quando, por exemplo, preparamos um refresco a partir de um suco concentrado. Considere 100,0 mL de determinado suco em que a concentração de soluto seja 0,4 mol.L⁻¹. O volume de água, em mL, que deverá ser acrescentado para que a concentração do soluto caia para 0,04 mol.L⁻¹, será de:

- (A) 1.000
- (B) 900
- (C) 500
- (D) 400

(E) 1100

QUESTÃO 14

Considere as seguintes transformações:

- I. Degelo de um "freezer".
- II. Sublimação da naftalina.
- III. Formação de uma nuvem de chuva a partir do vapor d'água do ar.
- IV. Combustão do álcool comum.

Dessas transformações, são exotérmicas somente:

- (A) I e II
- (B) II e III
- (C) III e IV
- (D) I, II e IV
- (E) II, III e IV

QUESTÃO 15

O metano (CH₄), conhecido como gás natural, pode ser substituído pelos combustíveis gasolina e/ou álcool (etanol).

Dadas as entalpias-padrão de formação das seguintes substâncias:

Calores de Formação	CO _{2(g)}	H ₂ O _(s)	CH _{4(g)}
(KJ/mol; a 25°C, 1 atm)	-393,5	-241,8	-74,8

O calor, em KJ, envolvido na combustão completa de 0,5 mol de metano, ocorre com:

- (A) liberação de 802,3;
- (B) absorção de 802,3;
- (C) absorção de 475,9;
- (D) liberação de 401,1;
- (E) liberação de 951,9.

QUESTÃO 16

Em um potenciômetro, se faz a leitura de uma solução 0,001 mol/L de hidróxido de sódio (utilizado na neutralização do ácido lático). Sabendo-se que o grau de dissociação é total, o valor do pH encontrado corresponde a:

- (A) 2,7.
- (B) 5,4.
- (C) 12,0.
- (D) 11,0
- (E) 9,6.

O flúor é um gás amarelado que, à temperatura ambiente, é extremamente reativo. Forma com o hidrogênio uma mistura explosiva, sintetizando o fluoreto de hidrogênio (em solução aquosa, o HF difere dos outros hidrácidos halogenados por formar um ácido fraco e por ser capaz de dissolver o vidro, formando flúor-silicatos). Observe a reação, nas condições — padrão, e marque a alternativa que responde corretamente à pergunta abaixo.

$$H_{2(g)} + F_{2(g)} \rightarrow 2 HF_{(g)}$$
; $\Delta H = -5.4 kcal$

Qual o calor de formação do HF e o tipo de reação representada acima?

- (A) +5,4 kcal/mol; reação endotérmica
- (B) -2,7 kcal/mol; reação exotérmica
- (C) +2,7 kcal/mol; reação exotérmica
- (D) -5,4 kcal/mol; reação endotérmica
- (E) +7,0 kcal/mol; reação exotérmica

QUESTÃO 18

Nas pizzarias há cartazes dizendo "Forno à lenha". A reação que ocorre deste forno para assar a pizza é:

- (A) explosiva.
- (B) exotérmica.
- (C) endotérmica.
- (D) hidroscópica.
- (E) catalisada.

QUESTÃO 19

 $Fe_2O_{3(s)} + 3C_{(s)} + 491,5 \text{ kJ} \rightarrow 2Fe_{(s)} + 3CO_{(g)}$

Da transformação do óxido de ferro III em ferro metálico, segundo a equação acima, pode-se afirmar que:

- (A) é uma reação endotérmica.
- (B) é uma reação exotérmica.
- (C) é necessário 1 mol de carbono para cada mol de $Fe_2O_{3(s)}$ transformado.
- (D) o número de mols de carbono consumido é diferente do número de mols de monóxido de carbono produzido.
- (E) a energia absorvida na transformação de 2 mols de Fe₂O_{3(s)} é igual a 491,5 kJ.

QUESTÃO 20

O carbeto de tungstênio, WC, é uma substância muito dura e, por esta razão, é utilizada na fabricação de vários tipos de ferramentas. A variação de entalpia da reação de formação do carbeto de tungstênio a partir dos elementos $C_{grafite}$ e $W_{(s)}$ é difícil de ser medida diretamente, pois a reação ocorre a 1.400 °C. No entanto, pode-se medir com facilidade os calores de combustão dos elementos $C_{grafite}$, $W_{(s)}$ e do carbeto de tungstênio, $WC_{(s)}$:

$$\begin{array}{ccc} 2W_{(s)} + 3O_{2(g)} \rightarrow 2WO_{3(s)} & \Delta H = -1.680,6 \text{ kJ} \\ C_{grafite} + O_{2(g)} \rightarrow CO_{2(g)} & \Delta H = -393,5 \text{ kJ} \\ 2WC_{(s)} + 5O_{2(g)} \rightarrow 2CO_{2(g)} + 2WO_{3(s)} \\ \Delta H = -2.391,6 \text{ kJ} \end{array}$$

Pode-se, então, calcular o valor da entalpia da reação abaixo e concluir se a mesma é endotérmica ou exotérmica:

$$W(s) + C_{grafite} \rightarrow WC_{(s)} \Delta H = ?$$

A qual alternativa corresponde o valor de ΔH e o tipo de reação?

	$\Delta {f H}_{\sf Reação}$	Classificação da Reação		
(A)	-878,3 KJ	Exotérmica		
(B)	-317, 5 KJ	Exotérmica		
(C)	-38,0 KJ	Exotérmica		
(D)	+38,0 KJ	Endotérmica		
(E)	+317,5 KJ	Endotérmica		

QUESTÃO 21

Embora existam evidências de que o ferro é conhecido desde os tempos préhistóricos, afirma-se que o cobre e o bronze foram utilizados anteriormente à descoberta do ferro que, provavelmente, foi preparado acidentalmente, por aquecimento de óxido de ferro em fogo produzido pela queima de madeira.

Com base nessas informações e nos conhecimentos sobre estrutura atômica, reações químicas e propriedades das substâncias químicas, é correto dizer:

- (A) O ferro é um metal de difícil oxidação.
- (B) O cobre e o bronze são substâncias compostas.
- (C) O ferro apresenta elétrons em cinco níveis de energia.
- (D) O ferro e o cobre pertencem ao mesmo grupo periódico.
- (E) O carbono, na reação Fe $_2$ O $_3$ + 3C \rightarrow 2Fe + 3CO, é agente redutor.

De acordo com os potenciaispadrão de redução das semi-reacões:

$$Ba^0 \rightarrow Ba^{2+} + 2e^- \hspace{0.5cm} E^0 = -2{,}90 \ V$$

$$Cu^0 \rightarrow Cu^{+1} + 1e^ E^0 = +0.52 \text{ V}$$

Qual a diferença de potencial da pilha:

- (A) + 2.38 volts.
- (B) -2,55 volts.
- (C) + 3,42 volts.
- (D) -3,42 volts.
- (E) 2,38 volts.

QUESTÃO 23

Os fabricantes e importadores estão obrigados, por lei, a recolher as baterias usadas em telefones celulares por conterem metais pesados como o mercúrio, o chumbo e o cádmio. Assinale a afirmativa correta.

- (A) esses três metais são classificados como elementos de transição;
- (B) esses metais são sólidos à temperatura ambiente:
- (C) os elementos de massa molar elevada são denominados de metais pesados;
- (D) a pilha que não contém metais pesados pode ser descartada no lixo doméstico;
- (E) a contaminação da água por metais pesados ocorre devido a sua grande solubilidade neste solvente.

QUESTÃO 24

Considerando a pilha Mg⁰ / Mg²⁺ // Fe²⁺ / Fe⁰ e sabendo que o magnésio cede elétrons espontaneamente para os íons Fe²⁺, é correto afirmar que:

- (A) o Mg⁰ é o agente oxidante.
- (B) o Fe²⁺ se oxida.
- (C) o Fe⁰ é o ânodo.
- (D) a solução de Mg²⁺ se diluirá.
- (E) o eletrodo positivo ou catodo terá a sua massa aumentada

QUESTÃO 25

A massa de sódio depositada, quando uma corrente de 15A atravessa uma certa quantidade de NaCl fundido durante 20,0 minutos, é:

Dados carga de 1 mol de elétrons = 96.500 C

- (A) 42,9 g
- (B) 6,62 g
- (C) 4,29 g
- (D) 66,2 g
- (E) 10,9 g

QUESTÃO 26

Em geral, reação química não ocorre toda vez que acontece uma colisão entre espécies potencialmente reativas. A reação ocorre quando as espécies reativas possuem um mínimo de energia no momento da colisão. É uma barreira que as espécies que colidem devem suplantar para produzir os produtos. Esse mínimo de energia denomina-se energia de

- (A) reação.
- (B) ativação.
- (C) dissociação.
- (D) ionização.
- (E) combustão

QUESTÃO 27

A sabedoria popular indica que, para acender uma lareira, devemos utilizar inicialmente lascas de lenha e só depois colocarmos as toras. Em condições reacionais idênticas e utilizando massas iguais de madeira em lascas e em toras, verifica-se que madeira em lascas queima com mais velocidade. O fator determinante, para essa maior velocidade da reação, é o aumento da:

- (A) pressão.
- (B) temperatura.
- (C) concentração.
- (D) superfície de contato.
- (E) número de prótons.

QUESTÃO 28

A produção de carbeto de silício, importante material refratário, envolve o equilíbrio representado por:

$$SiO_{(I)} + 3C_{(s)} \leftrightarrow 2SiC_{(s)} + 2CO_{(g)}$$

A expressão da constante desse equilíbrio é dada por

- (A) [SiC] / [SiO₂]
- (B) [CO]²/[C]
- (C) $[CO]^2 / [SiO_2]$
- (D) [CO]
- (E) [CO]²

O valor da constante de equilíbrio para a reação

$$2NH_{3(g)} \leftrightarrow N_{2(g)} + 3H_{2(g)}$$

 $\label{eq:Quando 3 mols/L de NH} \mbox{ quando 3 mols/L de NH}_{3} \mbox{ produzem 2 mols/L de N}_{2} \mbox{ e 3 mols/L de H}_{2}, \mbox{ \'e}, \mbox{ em mol/L},$

- (A) 6.
- (B) 3.
- (C) 2.
- (D) 0,303.
- (E) 0,104.

QUESTÃO 30

A produção da cianamida cálcica, hoje utilizada como matéria-prima para a fabricação de certas resinas, envolve o equilíbrio químico representado por:

$$CaC_{(s)} + N_{(g)} \leftrightarrow CaCN_{(s)} + C_{(s)}; \, \Delta H = -284,0 \text{ kJ/mol}$$

Esse equilíbrio será alterado no sentido de aumentar o rendimento em massa do produto se for

- (A) elevada a temperatura.
- (B) elevada a pressão.
- (C) utilizado um catalisador.
- (D) diminuída a pressão.
- (E) diminuída a quantidade de CaC2.